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We study theoretically the chirality of a generic rigid object’s sedimentation in a fluid under gravity in the
low Reynolds number regime. We represent the object as a collection of small Stokes spheres or stokeslets and
the gravitational force as a constant point force applied at an arbitrary point of the object. For a generic
configuration of stokeslets and forcing point, the motion takes a simple form in the nearly free draining limit
where the stokeslet radius is arbitrarily small. In this case, the internal hydrodynamic interactions between
stokeslets are weak, and the object follows a helical path while rotating at a constant angular velocity � about
a fixed axis. This � is independent of initial orientation and thus constitutes a chiral response for the object.
Even though there can be no such chiral response in the absence of hydrodynamic interactions between the
stokeslets, the angular velocity obtains a fixed nonzero limit as the stokeslet radius approaches zero. We
characterize empirically how � depends on the placement of the stokeslets, concentrating on three-stokeslet
objects with the external force applied far from the stokeslets. Objects with the largest � are aligned along the
forcing direction. In this case, the limiting � varies as the inverse square of the minimum distance between
stokeslets. We illustrate the prevalence of this robust chiral motion with experiments on small macroscopic
objects of arbitrary shape.
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I. INTRODUCTION

It is not unusual to see objects falling through water or air
twisting as they sink. For example, a propellerlike maple
seed will twirl as it falls from the tree. A consistent prefer-
ence for twisting in a particular direction would constitute a
chiral response of the object. Such a response must reflect
some chirality in its shape, and the magnitude and nature of
the twisting are evidently consequences of well-known hy-
drodynamic laws. However, there is little fundamental under-
standing of what features of the shape control the magnitude
of a chiral response.

In the past decade there has been a revival of interest in
the tumbling motion exhibited by extended objects as they
fall through air �1,2�. These complex motions are of a differ-
ent nature than what we study here. The objects under con-
sideration have no intrinsic chirality, and interesting motions
depend instead on significant Reynolds numbers, where the
advection of momentum through the fluid is important.

Aside from these, a few studies have examined the low
Reynolds number sedimentation of different bodies. For a
specific propellerlike design, Makino and Doi �3� showed
that an ensemble of identical particles with different initial
orientations will bunch together into a cylindrical shape ori-
ented along the direction of the sedimenting force, whereas a
similar group of achiral ellipsoids will drift apart. They have
also made some headway in classifying the range of allow-
able motions for objects depending on whether or not they
are skew or if there is an applied torque �4�. Gonzalez et al.
�5� further explained some properties of the possible mo-
tions. We hope to improve on the parts of this understanding
related to chiral objects.

Understanding the connection between shape and chiral
motion would allow chiral sedimentation to be used as a
characterization tool for objects of a supramolecular scale,
such as colloidal particles and cells. Detecting the rotation of

sedimenting bodies would give information not obtainable
from other simple probes such as dynamic light scattering
and intrinsic viscosity. These conventional measures sense
only the hydrodynamic size of the objects, whereas rotation
speed can sense the distinctive feature of a permanent chiral
shape. Many biological structures have a strong chirality that
is unrelated to propulsion. Examples include protein-DNA
complexes �6� and fibrils such as actin �6�, which are made
of repeating subunits. Such objects must rotate as they sedi-
ment, and knowledge of the connection between their shape
and their rotation would be valuable.

We will show that chiral motions are natural to character-
ize when the hydrodynamic interactions between parts of the
body are small. Thus, much of our study will be aimed at
objects with this property, which we will term “nearly free
draining.” Physical realizations of such objects can include
thin rodlike objects such as microtubules �6�, bacterial fla-
gella �6�, or sickle cells �7�. As a concrete example, we can
consider the propeller shape of Makino and Doi �3�, shown
in Fig. 7. For such an object of length about 10 �m in water,
with a density of about 1 g /cm3, we predict rotational ve-
locities on the order of 10 Hz. This should be noticeable,
even when compared to the rotational diffusion coefficient,
which for an object of this scale is only of order 10−4 Hz.
Smaller objects on the scale of a micron or less will also
have a noticeable effect if they sediment under a slightly
larger force, as in a centrifuge.

In Sec. II, we discuss the equations of motion for our
objects and show how any inherent chirality must be en-
coded and expressed. In Sec. III we introduce the “tumble
zone,” a region in parameter space which determines
whether or not a sedimenting object can exhibit ongoing
tumbling behavior, and put a bound on its size. Following
that, in Sec. IV we review a stokeslet formalism for model-
ing rigid bodies and show how to use this to calculate the
internal hydrodynamic interactions needed in the equations
of motion. In Sec. V, we find these interaction effects in the
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nearly free draining limit, where the interaction strength be-
comes small. In this limit, we find that the tumble zone be-
comes arbitrarily small and that almost all objects will ex-
hibit chiral sedimentation. Once this is established, in Sec.
VI we show how the chiral response behaves in certain lim-
iting cases. Using a simple three-stokeslet body, we empiri-
cally examine how different aspects of shape affect our mea-
surement of chirality. In Sec. VII we show the results of
numerical simulations. We check these numerical results
against the analytic ones found in Sec. V and compare the
typical motions of a random chiral body with both a more
symmetric propeller shape and an achiral ellipsoid. Finally,
we report the results of a simple experiment done on small
macroscopic objects of arbitrary shape.

Throughout the next several sections, we refer to many
different types of objects. To distinguish them, we use the
following conventions: three-vectors and unit three-vectors
will be denoted with arrows �e.g., v�� and hats �v̂�, respec-
tively. The 3�3 matrices that operate on them will use a
blackboard bold font �M�. Six-vectors will be in italics with

vector signs �V� �, and the 6�6 matrices will be underlined
�M�. Large vectors composed of three-vectors for each
stokeslet will be bolded with vector signs �v��, and the matri-
ces that interact with them will be bolded with underlines
�M�.

II. PROPULSION MATRIX

In order to analyze the behavior of our sedimenting body,
we take advantage of the fact that at low Reynolds numbers,
the force and torque on a body are proportional to its velocity
and angular velocity. Following Purcell �8�, we collectively
refer to these constants of proportionality as the propulsion
matrix P. That is, we define extended force and velocity

vectors F� ��F� ,���T and V� ��V� ,�� �T and write

F� = PV� . �1�

As a consequence of the Onsager relation, and the re-
quirement that the dissipated energy be positive, this propul-
sion matrix must be both symmetric and positive definite �9�,
so it can be written in block form as

P = �K CT

C G
� , �2�

where K and G are symmetric 3�3 matrices which are also
positive definite.

The propulsion matrix contains all of the information nec-
essary to describe the dynamics of the object. Once it is
known, an analysis of the motion can be carried out without
reference to the specifics of an object’s shape.

In order to specify a torque, P must be computed about a
specific point. Moving this point will change both C and G
though K will remain the same. Happel and Brenner �9�
showed how each of these individually transforms under a
change in coordinates. We arrive at equivalent results in a
slightly different form. To begin, let � and �� represent two
different inertial frames used to describe variables. In the

following, primed variables will denote quantities viewed in
the �� basis and unprimed ones will be those living in the �
basis. We then have propulsion equations for each of the

frames: F� =PV� and F� �=P�V� �.
It is easy to transform between coordinate systems that

differ only by a rotation: if R is the rotation matrix that will
take one set of axes to the other, then each sub-block X of P
changes as X→RXR−1. Next we consider frames � and ��

which differ only by location of the origin and let R� be the
vector to ��’s origin. We now consider the effects of a force

F� and torque �� applied at the origin of �. The body will feel
the same net force and torque and thus respond with the

same motion, which it will if we pull at R� with force F� and

supply a torque of �� + �−R� ��F� . That is,

F� � = F� + � 0

�− R� � � F�
� � �1 + B�F� , �3�

where the matrix B is defined in block form by

B = � 0 0

�− R� �	 0
� . �4�

Here we are using the notation that for any vector X� , �X� �	 is
the antisymmetric 3�3 matrix which satisfies

�X� �	v� =X� �v� for all vectors v� .
There is some extended velocity vector associated with

this given force and torque, but it will be represented differ-
ently in � and ��. The angular velocity must be the same in
both systems, but a different linear velocity needs to be used.

Using V� �+R� ��� =V� +0��� , we can conclude

V� � = V� + �− R� � ��

0
� = �1 − BT�V� . �5�

We can now combine these two expressions to get a rela-
tionship between P and P�,

F� � = P�V� �,

�1 + B�F� = P��1 − BT�V� ,

PV� = �1 + B�−1P��1 − BT�V� .

Since V� is an arbitrary velocity, we can just write

P = �1 − B�P��1 − BT� , �6�

where we have used the fact that �1+B�−1= �1−B�.
There is a unique point, termed the “center of reaction,”

�9� about which the submatrix C is symmetric. For many
objects with a high degree of symmetry, this often coincides
with the centers of mass and buoyancy, but for a general
case, these different points are not related.

For the sedimentation processes that concern us, it is often
convenient to deal with the inverse of the propulsion matrix,
known as the mobility matrix M. We will write it in block
form as
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M = �A TT

T S
� . �7�

The matrix A, which we will call the alacrity matrix,
gives the velocity response to an applied force. Our screw
matrix S gives the angular velocity caused by supplying a
torque, and the twist matrix T shows the coupling between
angular velocity and force.

Since P, K, and G are symmetric and positive definite, M,
A, and S must be as well. There is also a unique choice of
origin for which T is symmetric, but it is in general different
from the center of reaction. We will call this point the center
of twisting. Furthermore, by inverting the transformation law
for P, we can find how M changes if the origin is moved,

M = �1 + BT�M��1 + B� . �8�

From this, one can see that the screw matrix remains invari-
ant �S=S�� and that the twist matrix changes simply as

T = T� − S�R� �	 . �9�

Conveniently, for sedimentation processes the twist ma-
trix alone captures both the chiral information and the dy-
namics of interest. Indeed, if we want our sedimenting object
to show a preferred chirality, M must not be invariant under
inversions about the origin. A is necessarily invariant under
this inversion since both force and velocity transform as vec-
tors. The same is true for the screw matrix since both torque
and angular velocity transform as pseudovectors. However,
the twist matrix will reverse sign. Thus any chirality in the
object must manifest itself through this twist matrix. As a
simple example, we see that if the center of twisting is at the
origin, then an object can only be chiral if the eigenvalues of
T are not symmetric about 0.

The physical manifestation of chirality we are concerned
with is the rotation of our object: at any time t, �� �t�
=T�t�F� +S�t���. However, since sedimentation involves forces
acting on the centers of both mass and buoyancy, with no
supplied torques on either, it is possible to choose as our
origin a point of zero torque on the object. In this case, we

just have �� �t�=T�t�F� , which allows us to restrict our atten-
tion to the twist matrix.

The twist matrix scales in a simple way with the overall
size of the sedimenting object �9�. For a given object, the

force F� needed to produce a given �� is proportional to the
viscosity, �. Thus T is inversely proportional to � : T
=�−1T̃, with T̃ independent of viscosity. Evidently T̃ has
dimensions of viscosity/�force� time� or �length�−2. With a
fixed force, the rotation rate for an object enlarged by a fac-
tor � will thus be reduced by a factor of �2. Analogous

reasoning shows that the velocity V� is reduced by a factor �3.
The object’s translation for a given increment of rotation thus
varies linearly with �, and enlarging the object simply en-
larges the path of its sedimenting motion by the same factor.

Given the twist matrix at time t, it can be found some
small 	t later by rotating T�t� by the angle ��t�	t. Then

T�t + 	t� = 
1 − 	t��� �t��	�T�t�
1 + 	t��� �t��	� .

Eliminating terms of order 	t2 gives

T�t + 	t� = T�t� + 	t�T�t�,��� �t��	� .

Taking 	t→0 yields

Ṫ = �T,�TF� �	� . �10�

The other blocks of the mobility matrix evolve in a simi-

lar fashion, Ȧ= �A , �TF� �	�, and likewise for S.
This formalism, with fixed axes in the laboratory frame

and a dynamical T, is equivalent to the Euler equation for-
malism used by Gonzalez et al. �5�, which treats the body
axes as fixed, and considers a dynamic force vector. We de-
note quantities in this body frame of reference using double-
prime marks, �. At each instant the body frame rotates rela-
tive to the space frame with angular velocity �� , as noted
above. Thus the space frame rotates with respect to the body

frame at angular velocity −�� , and dF� � /dt=−�� �F� �. This �� ,
common to both frames, can be expressed equally in the

body or space frame: �� =TF� =T�F� �.
Of particular interest are stationary states, in which the

essential part of the motion is constant in time. In the body

frame, a stationary state is one in which dF� � /dt=0. Since

dF� �/dt = − � � F� � = − T�F� � � F� �, �11�

there is a stationary state if and only if F� � is an eigenvector

of T�, with an eigenvalue that we denote as 
. Since F� � is

constant in time, �� =T�F� � must be as well.
Because the twist matrix is 3�3, it has either one or three

real eigenvalues. In the case of a single real eigenvalue, the
analysis above implies two fixed-point forces in opposite di-
rections. The sign of the eigenvalue gives the chirality: a
positive eigenvalue means that with the usual right-handed
definition of angular velocity, the object twists as it descends
in the direction of a right-handed screw. The chirality of the
two fixed points is thus the same. However, the stability is

not. The stability of the fixed-point direction F̂0� can be de-

termined by considering the quantity F̂� · F̂0�. Its derivative

dF̂� /dt · F̂0� determines whether F̂� moves toward or away
from the fixed point with time. One may readily show �5�
that for a given F̂0�, the sign of this derivative is fixed for all

F̂�� � F̂0�. If this was not the case, then there would be some

F̂� for which dF̂� /dt · F̂0�. To see that this is impossible, note

that it either requires dF̂� /dt� F̂0� or dF̂� /dt=0. Consider

first the case where dF̂� /dt� F̂0�. Equation �11� tells us that

dF̂� /dt� F̂� and dF̂� /dt�T�F̂�. Since F̂0� is the only eigen-

vector of T�, this means that dF̂� /dt has no component in

any of the three independent directions F̂0�, F̂�, and T�F̂�.

This leaves us with the option that dF̂� /dt=0. However, this

means that F̂� is a fixed point, which contradicts the assump-

tion that F̂0� is the only eigenvector of T�. Thus dF̂� /dt · F̂0�

�0 for all F̂�� � F̂0�, meaning that dF̂� /dt · F̂0� has the same
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sign for all such F̂�. If the sign is positive, then all F̂� move

toward the F̂0� axis and F̂0� is then a globally stable fixed

point. Evidently the opposite fixed point at −F̂0� is globally
unstable.

With three real eigenvectors, dF̂� /dt · F̂0� can vanish at

points besides �F̂0�, so the global stability argument above is
no longer valid. The simple chiral signature of the object is
no longer present, and the motion becomes more compli-
cated and depends on initial conditions �5�. Happily, this case
can be excluded for a large class of objects, as we show
below.

III. TUMBLE ZONE

Given a fixed shape for an object, we can choose the
center of twisting as our origin. At this point the twist matrix
is symmetric, meaning T must have three real eigenvalues.
Next, keeping the object’s shape fixed, we can explore the
locus of points to which we can move the forcing point while
still keeping all three eigenvalues real. Since, as shown
above, global stability is not present at these forcing points,
we call the region they form the tumble zone for that par-
ticular shape. We will show here that the volume of this
tumble zone is always finite.

With any choice of origin, the screw matrix S is always
symmetric with positive eigenvalues, as discussed in Sec. II.
We may then work in the basis where

S = diag�s1,s2,s3� .

In this basis, we will move the forcing point to R� p. From Eq.

�9�, this will give us a new twist matrix T=T�−S�R� p�	,
where T� is the twist matrix computed about the center of

twisting. We will show that if we choose R� p to be sufficiently
large, then the new twist matrix about this origin must have
only one real eigenvalue.

We can compute the discriminant 	 of the characteristic
polynomial of our T. If the discriminant of a cubic equation
is positive, then there is one real root and two complex con-
jugate ones. In this case, our twist matrix will have only one
real eigenvalue. The discriminant is

	 = 27 Det2�T� − 4 Det�T�Tr3�T� + 9 Det�T�Tr�T��Tr2�T�

− Tr�T2�� − 1
4Tr2�T��Tr2�T� − Tr�T2��2 + 1

2 �Tr2�T�

− Tr�T2��3, �12�

which is homogeneous of sixth degree in T.
The discriminant 	 is a sixth degree polynomial in Rp, so

if the coefficient of the Rp
6 term is positive, we can be assured

of getting 	�0 for any Rp bigger than the largest root of this
polynomial. Since 	 is homogeneous, there can be no pow-
ers of T� in the Rp

6 term. This leading term can thus be found

from Eq. �12� by replacing T with S�R� p�	. Since S is sym-

metric and �R� p�	 is antisymmetric with a zero eigenvalue,

Det�S�R� p�	� and Tr�S�R� p�	� both vanish. Accordingly, the
only term in Eq. �12� that can contribute in order Rp

6 is the
last one,

	 = − 1
2 
Tr��S�R� p�	�2��3 + O�Rp

5� . �13�

In terms of the eigenvalues si and the coordinates Rp1, Rp2,
and Rp3, this trace has the form

Tr��S�R� p�	�2� = − 2�Rp1
2 s2s3 + Rp2

2 s1s3 + Rp3
2 s1s2� .

Since the si are all positive, if we define sm=min
si� then we
can write

	  2sm
6 Rp

6 + O�Rp
5� , �14�

whose leading term has a positive coefficient.
Thus outside a sphere of sufficient radius Rp the discrimi-

nant is positive, there is a single real eigenvalue, and the
motion converges to the globally stable motion discussed in
Sec. II.

IV. STOKESLET REPRESENTATION

The propulsion matrix for a body can sometimes be found
analytically, and there are several known results for objects
with various symmetries �9�. However, it can be more diffi-
cult to find when such symmetries are not present. We use
the approach of Kirkwood and Riseman, as described by
Meakin and Deutch �10�, in which a sedimenting body is
represented as a rigid collection of small beads known as
stokeslets. Each stokeslet corresponds to a point source of

drag, which exerts a force proportional to its velocity, F� =
−�v� , with drag coefficient �=6��� proportional to the fluid
viscosity � and effective radius � of the stokeslet.

By arranging the stokeslets appropriately, the flow field
from most objects can be recreated �11�. Thus, they form a
simple way of modeling arbitrary bodies. This approach is
used, for example, to model flagellar propulsion �12�.
Carrasco and de la Torre �11� investigated the effectiveness
of different strategies for placing the stokeslets.

To create a propulsion matrix from a collection of stokes-
lets, one must take into account the change in fluid velocity
past each stokeslet caused by the presence of the others. If
one does not include these hydrodynamic interactions, then
there can be no chiral effects in the sedimentation: the object
will sink straight down, so all drag forces will be vertical in
order to oppose it, and thus there can be no torque about the
vertical axis. However, if we do include these interactions,
the velocity at each stokeslet may be perturbed from the
vertical, possibly causing a torque about that axis. This can
make the object demonstrate chirality by spinning.

The tool we use is the Oseen equation, which gives the
change in fluid velocity caused by one of these stokeslets. In
the frame of a body with n stokeslets, let v� be the 3n com-
ponent vector containing the velocity of the fluid at the lo-
cations of each stokeslet, taking hydrodynamic interactions

into account: v� = �v�1 ,v�2 , . . . ,v�n�T. We define F� to be the 3n
component force vector acting on the stokeslets and v�e to be
the external �undisturbed� velocity of the fluid at the location
of each stokeslet. Then we can write the Oseen equation,
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v� = v�e + LF� ,

where L is the Oseen tensor �13�. If we denote particle num-
ber by Greek letters and Cartesian coordinate by Roman let-
ters, then for ��� we can write

Lij
�� =

1

8��r����ij +
�ri

� − ri
���rj

� − rj
��

�r���2 � �15�

with ri
� as the ith coordinate of particle � and r�� as the

distance between particles � and �. For �=� we should have
0 since an individual stokeslet cannot affect itself.

Let U be the 3n�6 matrix which relates the 3n dimen-

sional v�e and the extended velocity vector V� = �V� ,�� �T: v�e

=UV� . Since the velocity of the fluid past each stokeslet is the
opposite of the velocity at which the object is moving

through the fluid, v�e
�=−V� −�� �r��. Thus we can see that U

= �U1 , . . .Un�T, with

U� = �− 1,�r���	� = �− 1 0 0 0 − rz
� ry

�

0 − 1 0 rz
� 0 − rx

�

0 0 − 1 − ry
� rx

� 0
 .

This U matrix also has the property that F� =UTF� .
If we define the 3n�3n matrix �

=diag��1 ,�1 ,�1 ,�2 ,�2 ,�2 , . . . ,�n ,�n ,�n�, then F� =�v� , and
we can rewrite the Oseen equation as

v� = v�e + L�v� ,

v� = �1 − L��−1v�e,

UT�v� = UT��1 − L��−1v�e,

F� = UT��1 − L��−1UV� .

But this is just our definition of the propulsion matrix,

P = UT��1 − L��−1U . �16�

This result, which is a straightforward extension of the
Kirkwood-Riseman method explained in Ref. �11�, shows
that one can calculate P from a matrix inversion.

V. NEARLY FREE-DRAINING LIMIT

A. Propulsion matrix

When using the stokeslet model, we have an obvious
mechanism by which we can model nearly free draining bod-
ies: we simply take the stokeslet size �and thus the drag
coefficient �� close to zero. If we assume from now on that
each stokeslet has the same effective radius, we can obtain
perturbative expansions in this common � and write

K = K0� + K1�2 + ¯ ,

G = G0� + G1�2 + ¯ ,

C = C0� + C1�2 + ¯ .

To first order in �, there are no hydrodynamic interac-
tions, so we just have

v� = v�e

when the body is not rotating. In this case, the total force on
the object is just the sum of the individual forces acting on

each stokeslet: F� =��=1
n �−�v���, and v��=−V� is the same for

all �. But F� = �K0��V� , so we get a K0 that is just the identity
matrix times the number of stokeslets n,

�K0�ij = n�ij . �17�

For the coupling tensor C, we have

�C0��V� = �� = �
�=1

n

r�� � ��V� � ,

C0 = �
�=1

n

�r���	 , �18�

which is completely antisymmetric. If the origin is at the
mean stokeslet position r�c= 1

n��r��, then C0=0.
Finally, when the body is rotating without translating,

�G0���� = �� = �
�=1

n

r�� � ��v���

= ��
�=1

n

r�� � ��� � r��� = ��
�=1

n

��r��2 − r��r����� ,

so G0 is an inertia tensor,

�G0�ij = �
�=1

n

��r��2�ij − ri
�rj

�� . �19�

To second order, hydrodynamic interactions become im-
portant,

v� = v�e + L��v�e� .

Using our expression for the Oseen tensor gives

�K1�ij =
1

8��
�

�,���
� �ij

r�� +
ri

� − ri
�

�r���3 �rj
� − rj

��� ,

�C1�ij =
1

8��
�

�,���
� �r���	ij

r�� −
�r�� � r���i

�r���3 �rj
� − rj

��� ,

�G1�ij =
1

8��
�

�,���
� �r�� · r����ij − ri

�rj
�

r��

+
�r�� � r���i�r�� � r��� j

�r���3 � .

Since there is no term in the propulsion matrix which is
zeroth order in �, the expansion for T has the form
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T = T0�−1 + T1 + T2� + ¯

and will diverge as the effective stokeslet size approaches
zero. Fortunately, the eigenvalues of T will not end up di-
verging as well.

To see this, we will compute M by inverting P in block
form. We can identify the screw matrix S as the inverse of
the Schur complement of K, giving S= �G−CK−1CT�−1 and
then T=−SCK−1. Likewise, the alacrity matrix A is the in-
verse of the Schur complement of G.

When we neglect internal hydrodynamic interactions, the
twist matrix then becomes

T0 = − �G0 − C0K0
−1C0

T�−1C0K0
−1. �20�

As discussed above, there can be no twisting due to an ap-
plied force unless there are hydrodynamic interactions. This
means that the centers of twisting and reaction are the same
here and that at this point, C0=T0=0. As noted above, this
point is also the mean stokeslet position r�c. Since the twist
matrix vanishes here, we can see that T0 will always have a
null vector, regardless of where the origin is: to move the

origin from the center of reaction to a position R� corresponds

to changing the twist matrix to T0�=0−S0�R� �	. But then

T0�R
� =−S0�R� �	R� =0, so T0� still has at least one eigenvector,

R� , with a corresponding eigenvalue of zero. Thus as � de-
creases, one eigenvalue of T0�−1 remains zero, though the
other two may become large and complex.

When small hydrodynamic effects are added, the twist
matrix expands to first order as

T = T0�−1 + T1.

Because � is small, T1 makes a negligible correction to the

T0�−1 term, except in the null space of T0. Here, TR� =T1R� ,
which is independent of �. To this order, the axis of spin is

then R� , the vector from the average stokeslet position r�c to
the forcing point.

Since some eigenvalues of T0 can be complex, we cannot
diagonalize it using real eigenvectors. However, we can put
T0 into Jordan canonical form using a basis of the form


v�1 ,v�2 ,R� �. If we let R� d
T denote the dual of R� , satisfying

R� d
TR� =1 and R� d

Tvi=0, then a real eigenvalue of T to this order
will be


 = R� d
T�T0/� + T1�R� = R� d

TT1R� ,

which is independent of �.
As noted above, the chiral response depends on hydrody-

namic interactions between parts of the object. These inter-
actions go to zero with the drag coefficient �. Thus it is
natural to anticipate that the angular velocity of the object
should vanish with �. Remarkably, this is not the case: we
have just seen that a real eigenvalue of the twist matrix, and
thus the angular velocity, reaches a nonzero limit as �→0. In
this sense, there is a qualitative difference between the nearly
free draining state and the perfectly free draining state. The
difference may be understood through the propulsion matrix,

which gives the force and torque in terms of the velocity V�

and angular velocity �� , and is regular as �→0. Both the

amount of torque for a given V� and no �� and the amount of

torque for a given �� with no V� are proportional to �. With
sedimentation, there is no net torque on the object, so we can

find our �� for a given V� by the requirement that the torque
vanishes. If � is then reduced, both sources of torque are
reduced in proportion, and the total torque remains zero with
no change in �� . Thus �� has no tendency to vanish with �.

B. Tumble zone

In Sec. III, we showed that the tumble zone had finite
volume. The size and shape of this volume depend on the
drag coefficient �. We will now show that the volume of the
tumble zone goes to zero at least as fast as �3. Thus for
sufficiently small �, any collection of stokeslets taken about
any origin with no special symmetries will fall outside of the
tumble zone and must thus have simple fixed-point chiral
sedimentation.

We use an argument similar to that in Sec. III but choose

the forcing point to be of the form R� p=�QR̂p, where Q is
independent of �. About the center of twisting, we can write

T = T1,

S = S0�−1 + S1

since in the low � limit, T0=0. Then

T = T1 − �S0/� + S1��R� p�	 = T1 − Q�S0 + S1���R̂p�	

�21�

which has a part of order �0 and a correction of order �1. The
resulting discriminant 	 for the characteristic polynomial of
T can be computed from Eq. �12� as in Sec. III but replacing

S�R� p�	 with QS0�R̂p�	+O��Q�. Using this substitution, we
obtain a discriminant similar to Eq. �13�,

	 = − 1
2 
Tr��QS0�R̂p�	�2��3 + O�Q5� + O�Q6�� . �22�

Letting s0m be the smallest of the eigenvalues of S0 gives the
bound

	  2s0m
6 Q6�0 + O�Q6�� + O�Q5� , �23�

except in the unphysical case that the stokeslets are perfectly
collinear. In this case, one of the eigenvalues of S0 is zero,

and taking R� p perpendicular to this direction will make the
Q6�0 term vanish.

Since � is small, the main contribution to the coefficient
of the Q6 term is from the �0 part, which from Eq. �23� is
positive. For sufficiently large Q, we can then be assured that
	�0, giving one real eigenvalue for T.

Thus we see that in the nearly free draining limit, the
tumble zone can be fit inside of a sphere whose radius is
proportional to the drag coefficient �. As �→0, the tumble
zone then must become vanishingly small. Unless the sedi-
menting object has the special property that its forcing point
is exactly at the center of twist, we will thus get only one real
eigenvalue for the twist matrix. We then expect globally
stable chiral motion as it sediments.
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VI. CHIRALITY

The globally stable motion expected for nearly free drain-
ing sedimenting objects lends itself naturally to defining a
chirality. If we denote the real eigenvalue of T by 
, then

=� /F with F as the magnitude of the applied force and �
as the constant angular velocity. We can try to use this 
 as a
measure of the chirality. Conveniently, 
 is independent of �
for nearly free draining objects, so we only need to know the
shape of the object and the forcing point and are not obliged
to worry about the precise stokeslet strength.

Unfortunately, if we try to use this measure to look for a
“most chiral” object, we will be sorely disappointed: for a
fixed �, 
 diverges as the stokeslets become collinear. In this
rather unphysical case, the eigenvalue of G corresponding to
rotations about the line of stokeslets will become zero, mak-
ing P noninvertible and our expression for T, which depends
on G−1, diverge.

A. Distant forcing point limit

In order to characterize the divergence of 
 we may sim-
plify the analysis by considering the limit where the forcing
point is far away from the stokeslets. This is a convenient
choice because as long as the distance Rp from the center of
reaction to the origin is large, 
 is actually independent of
the precise value of Rp. This is true for any object and does
not depend on the approximation of small � used in Sec. V.

To prove this assertion, we will first assume that we know
the twist matrix around the center of twist. This choice of
origin is somewhat arbitrary—any point close to the stokes-
lets will do. Once we have this T, we will move the origin to

the point R� p, where according to Eq. �9� the twist matrix is

given by T�=T−S�R� p�	.
One of the eigenvalues of S�R� p�	 is zero. Since Tr�S�R� p

�	�=0 and �Tr�S�R� p�	�2��0, the two nonzero eigenvalues
must be imaginary.

Next we will choose the basis, not necessarily orthogonal,

which puts S�R� p�	 into Jordan canonical form. Here,

S�R� p�	 = �r 1 0

0 r 0

0 0 0
 ,

where r is a generalized eigenvalue proportional to the pull-
ing distance Rp. We will define the basis 
�0� , �1� , �2�� by

S�R� p�	�0�=0, S�R� p�	�1�=r�1�, and S�R� p�	�2�=r�2�+ �1�.
We will also form the dual basis 
�0� , �1� , �2��, which satisfies
�i � j�=�ij.

Our goal is to find the real eigenvalue of T�

=T−S�R� p�	. Since Rp is large, T serves as a small pertur-

bation of the S�R� p�	 matrix. The real eigenvalue 
 must

then be a perturbation of the single real eigenvalue of S�R� p
�	, namely, zero. We will express its corresponding eigen-
vector as �v�= �0�+�1�1�+�2�2�, choosing to scale it so that
the coefficient of �0� is 1 and �i�1. With this expansion,

T��v� = 
�v� ,

T��0� + �1�1� + �2�2�� − S�R� p�	��0� + �1�1� + �2�2��

= 
��0� + �1�1� + �2�2�� ,

T�0� + �1T�1� + �2T�2� − �1r�1� − �2r�2� − �2�1�

= 
��0� + �1�1� + �2�2�� .

The �iT terms must be small by comparison with the �ir
terms, so we can drop them. Now applying �0� to both sides
gives


 = �0�T�0� , �24�

which is independent of the distance Rp.

B. Shape dependence of the chiral response

Here we determine how the chiral sedimentation coeffi-
cient 
 depends on the locations of the stokeslets in the
nearly free draining limit, in the case of distant forcing point.
Even though 
 is independent of the distance to the forcing
point in this limit, it can still depend on the orientation of the
object relative to the pulling direction. We thus distinguish
the coordinates of the stokeslets parallel and perpendicular to
this forcing direction, denoted as ẑ. We first note that our
system has no distinguished origin, so 
 can depend only on
the distances between the stokeslets. Accordingly, we mea-
sure stokeslet positions relative to their center,

r�c =
1

n
�
�=1

n

r��.

In terms of this, we define parallel and transverse radii of
gyration, given by

R�
2 =

1

n
�
�=1

n

�rz
� − rz

c�2

and

R�
2 =

1

n
�
�=1

n

�r��
� − r��

c �2.

The total radius of gyration is then Rg
2=R�

2+R�
2 .

We use four parameters to characterize the distribution of
stokeslets. The overall size can be expressed in terms of the
radii of gyration given above. In addition, we use a length Z
defined below to characterize inhomogeneity in longitudinal
position and a dimensionless quantity 	 to characterize an-
isotropy in the transverse plane.

To simplify matters, we will focus on configurations with
the fewest number of stokeslets required to make a chiral
response possible. Since the object as a whole also includes a
forcing point, we only need three stokeslets to guarantee a
nonplanar configuration. In such cases, with a distant forcing
point, there are nine coordinates which can specify shape.
However, 
 is independent of translation and of rotation
around the pulling axis, so only five coordinates are poten-
tially significant. We next show that the four parameters
named above appear to suffice.
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To begin, we check the dependence of 
 on the size of the
object. We do this by fixing a configuration of stokeslets and
then computing 
 as we uniformly change the interstokeslet
distances. The particular configuration we use is shown in
Fig. 1. It has the three stokeslets arranged so that their pro-
jection in the xy plane is an equilateral triangle with side
length R centered about the origin, and their positions along
the ẑ axis are 0 and �R. In this case, it does not matter which
corner of the triangle is at which z value; by symmetry, re-
arranging them can at most change the sign of 
, while its
magnitude is our concern here. We will then move the forc-
ing point to Rpẑ, with Rp�R, and compute 
.

In Sec. II we noted that the propulsion matrix depends
linearly on �, so 
��−1. We can ignore this simple depen-
dence on viscosity by setting �=1. We will also set �
=6���=10−2, with � in the same arbitrary distance units we
use to measure R. As long as ��R, this is within the regime
of small �, so the precise value does not matter.

As discussed in Sec. II, all elements of T scale as an
inverse length squared, so 
 must as well. Since 
 is inde-
pendent of the Stokes radius and distance to the forcing
point, as shown in Secs. V A and VI A, we must form this
length scale from the interstokeslet distances. Indeed, we can
verify numerically that 
�R−2, as shown in Fig. 2�a�. Since
Rg scales with R, it is clear that 
�Rg

−2. We can further try to
break this dependence down into one based on R� and R�. To
begin, we fix the z positions of the stokeslets to be 0 and �1
and then vary the side length of the equilateral triangle. As

shown in Fig. 2�b�, when the side length is long compared to
the z positions, we get 
�R�

−5. This corresponds to a flat
transverse object. For small side lengths, we get 
�R�

0 . This
corresponds to an object that is elongated along the pulling
direction. We can also see what happens when we fix the side
length of the equilateral triangle in the transverse projection
at 1 and instead vary the z distance between stokeslets, put-
ting them at 0 and �R�. The results are shown in Fig. 2�c�.
We see that for R� �1, we get 
�R�

3, and for R� �1, we get

�R�

−2.
Taken together, these observations suggest that we can

write 
=Rg
−2f�R� /R��, where

f�x� � �x3, x � 1

x0, x � 1.
� �25�

We can see that when R� �R�, the function f is a constant.
Thus in this regime we know the scaling of 
 based on
relative transverse and longitudinal sizes and can focus on
other aspects of the object’s shape.

We will consider two general distortions of our shape
from the previous one: first, we will relax the requirement
that the z values be equally spaced in order to see the effect
of bunching a pair of stokeslets together. Next, we will re-
move any restrictions on the transverse shape.

To characterize the bunching, we will use the inverse
squared moment Z, defined by
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(b)(a) (c)

FIG. 1. The stokeslet configuration used to check the scaling of 
 with the size of the object. To the left is a perspective view from an
arbitrary direction. The pulling direction is toward the bottom of the cube in the −z direction. The center and right views show projections
of the stokslets onto the xy and xz planes, respectively.
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FIG. 2. Numerical results showing the scaling of 
 with �a� R, �b� R�, and �c� R� for configurations like that of Fig. 1. In �a� there is a
single scaling exponent of −2. In �b�, for R��R� =1, we have a scaling exponent of −5 and for R��R� =1, it is constant. In �c�, we have
an exponent of 3 for R� �R�=1 and −2 for R� �R�=1.
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Z−2 =
1

n
�
�=1

n

�rz
� − rz

c�−2.

This length Z is dominated by the closest pairs of stokeslets.
If we consider the ratio Z /R�, we get a dimensionless quan-
tity which becomes large if some stokeslets are bunched
close together.

If a pair of stokeslets is bunched together, the hydrody-
namic interactions between them become stronger. We ex-
pect this greater interaction to promote chiral behavior. In-
deed, our numerical studies indicate that uneven spacing
leads to larger 
. We again fix the transverse projection of
the stokeslets to be an equilateral triangle, with side length a.
We then choose the two extremal longitudinal projections to
be at �5 and allow the middle stokeslet position z to vary
between the other two. Figure 3 shows the chirality as a
function of z for three different values of a. We see that there
is a peak in 
 as the stokeslets approach each other, but it
falls off if they get too close. The maximal 
 occurs when
the longitudinal spacing is about equal to the transverse spac-
ing.

To characterize the shape of the transverse projections, we
consider the eccentricity of the inertia ellipse. If we define a
projected tensor of inertia by

Iij =
1

n
�
�=1

n

�ri
� − ri

c��rj
� − rj

c�

for i , j� 
x ,y�, then we can use

	 =
4 Det�I�
Tr2�I�

as a measure of the eccentricity. It goes to zero when the
stokeslets are collinear, and one when they are isotropically
arranged.

We can now consider 
 as a function of both 	 and Z /R�.
We confine ourselves to shapes with Rp�R� �R�, which
gives maximal 
 as seen above.

To see the dependencies, we generated 104 random three-
stokeslet configurations, choosing each stokeslet from the
box �−1 /2,1 /2�� �−1 /2,1 /2�� �−10,10� and discarding it

if R� �10R�. Again we removed � and � dependencies by
taking �=10−2 and �=1.

The observed 
 values varied widely and irregularly.
However, if we define the pth moment of the stokeslet posi-
tions

Up = � 2

n�n − 1� ��=1

n

�
�=�+1

n

�r�� − r���p�1/p

and instead plot 
�U−2�2�Z /R��2, we get a relatively smooth
bounded function. Thus we can write


 = �U−2�−2� Z

R�
�2

g�
r���� , �26�

where g is a bounded function of its arguments.
Figure 4 shows a plot of g as a function of 	 and �Z /R��2.

From this plot, we can see a definite dependence on 	, indi-
cating that g and thus 
 prefer higher 	. This means that
faster rotation occurs when the transverse projection is iso-
tropic rather than elongated, while the object as a whole is
long and slender.

In general, studying this simple three-stokeslet case in the
limit of distant forcing points has shown that the preferred
shape for high chirality is a long and slender object. Along
the length of the object, some clustering of stokeslets is pre-
ferred, and in the transverse plane it is beneficial to have
isotropic arrangements of stokeslets.

So far we have only considered the magnitude of the chi-
ral response for our three-stokeslet systems. It would be con-
venient if there was an easy way to determine the sign of the
chirality as well. We propose a method which seems to give
acceptable results for those systems with large values of �
�.

We first order the stokeslets according to their longitudi-
nal proximity to the forcing point. In the transverse projec-
tion, the ordering will form either a clockwise or counter-
clockwise triangle. We propose that these respectively
correspond to a negative and a positive chirality. The physi-
cal argument for this triangle rule is that as the object sinks,
the first stokeslet will have a stronger interaction with the
second than the third, and so on. This will cause a slip-
streaming effect, where the fluid behind the first causes less
drag on the second behind it. This preferentially allows the
object to move in that direction, much like a corkscrew.

To test this numerically, we generated 104 triples of
stokeslets chosen at random from the box �−2,2�� �−2,2�
� �−2,2�. For each object we computed the chirality and
applied the above triangle rule. The results are shown in
Table I. The triangle rule predicted the correct chirality
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a = 1/2
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a = 2

FIG. 3. The chiral coefficient 
 for a three-stokeslet object
whose transverse projection is an equilateral triangle of side length
a. Two of the longitudinal coordinates are fixed at �5, and the third
is varied over z values between them.

0 0.2 0.4 0.6 0.8 1∆ 0
0.4

0.8
1.2

1.6
2

(Z/R||)
2

0.005

0.010

0.015

0.020

0.025

g

FIG. 4. The g function plotted versus 	 and �Z /R��2. We can see
that it is bounded and prefers high 	 and Z /R�.
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roughly three quarters of the time. We anticipate as well that
more chiral objects will be more likely to follow our sign
convention, as the slipstreaming effect will be stronger. To
test this, we repeat our comparison using only those configu-
rations whose �
� value was larger than the average. As
shown in Table I, our method was indeed more accurate with
the more chiral configurations. We can test this in another
way by limiting ourselves to the more chiral configurations
which we know arise when our three stokeslets are instead
chosen from the box �−1 /2,1 /2�� �−1 /2,1 /2�� �−10,10�.
In the case of these slender configurations, our method is
quite effective. While it is not perfect, it can provide a rea-
sonable guess at the sign.

Our explicit calculations above focused on the simplest
stokeslet object that can have chirality: three stokeslets with
the forcing point at infinity. We noted that such an object has
five relevant degrees of freedom but studied the effect of
only four of them. To specify the minimal object completely
therefore requires an additional parameter. One choice is to
use the full 3�3 inertial tensor instead of its transverse pro-
jection. The principal axes of this tensor need not be aligned
with the forcing direction, so we can take our additional
parameter to be the smallest angle between a principal axis
and the forcing direction. Evidently for the elongated objects
with large 
 we have been studying, this angle is small, and
does not have a major effect in this regime.

VII. EXAMPLES OF BEHAVIOR

A. Numerical results

As a simple test of the results from Sec. V, we can gen-
erate several stokeslet configurations at random and verify
that in the nearly free draining limit we get the simple chiral
sedimentation predicted above, with the expected axis of ro-
tation and angular velocity. We will do this with four objects:
for object A, we form a five stokeslet object by picking ran-
dom positions in the box �−2,2�3 and setting the origin as the
forcing point. Object B is the same as object A except for the
location of the forcing point. This point is moved closer to
the center of twisting in order to increase the tendency to
tumble. Specifically, the center of twisting is determined at a
particular choice of stokeslet radius, namely, 2/3 of the ra-
dius �max which would create contact between stokeslet

spheres. The forcing point is then placed at this center of
twisting and remains there as the stokeslet radius is varied
and the resulting motion measured. Object C is created the
same as object B but with a different random choice of
stokeslet positions. Finally, object D is a random ten stokes-
let object, again with the origin moved as above. These are
shown in Fig. 5.

For each object, we first determine the axis we expect the
object to rotate around in the nearly free draining limit. This

is easy: as described in Sec. V A, the real eigenvector 
� of
the twist matrix is just the vector from the forcing point to

the average stokeslet position, 
� �r�c.
To find the angular velocity, we compute T0 and T1 as in

Sec. V and form the basis v�1, v�2, and 
� which puts T0 into

Jordan canonical form. Let 
�d
T be the dual of 
� , which satis-

fies 
�d
T
� =1 and 
�d

Tv� i=0. Then the real eigenvalue of T is just


=
�d
TT1
� , and we can find the angular velocity from �

=
�F�, with �F� as the magnitude of the sedimenting force.
In Fig. 6, we compare these nearly free draining results

with the results obtained from inverting Eq. �16� using �F�
=�=1. We see that the nearly free draining results hold over
several decades of � values. Significant deviations occur
only when the object is near the tumble zone. In the tumble
zone, there is no single value of � or cos � which can be
plotted. However, we can see that we need to be quite close
to the center of twisting for this to occur; the global stability
and predictions from the nearly free draining limit made ear-
lier are quite robust in practice.

We next study the effect of initial orientation on the sedi-
menting path, as Makino and Doi �3� did for their skew

TABLE I. Comparison between the number of times the actual
sign of the chirality matched the sign estimated using our triangle
rule. The very chiral configurations were selected from the rest via
the criterion that their chirality be larger than the average. In addi-
tion, 104 configurations were chosen at random from the slender
regime studied earlier, where we expect to find the most chiral
configurations.

All
configurations

Very chiral
configurations

Slender
configurations

Matching signs 7518 2498 9868

Different signs 2482 264 162

Percent matched 75.2 90.4 98.7
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Y
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FIG. 5. Projections of the four stokeslet configurations used in
Sec. VII A. In each image, the gray circles represent stokeslets, a
small square marks the average stokeslet position, and arrows point
to the forcing points used. Objects A and B are identical except for
the positions of their forcing points and are shown on the left.
Objects C and D are shown in the middle and on the right. Each
object has been rotated so that the coordinate axes are aligned with
the principal axes of the inertia tensor, with ẑ and x̂ corresponding
to the largest and smallest of these, respectively. The size of the
gray circles corresponds to the largest the stokeslets can be without
causing the object to enter the tumble zone. In the case of the
leftmost images, this is done with respect to object B.
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propeller shape. We do this by taking N=100 objects, each
shaped as the object plotted in Fig. 6�a� above, but with
different random initial orientations. We then release them
from the same point �x ,y ,z�= �0,0 ,0� and consider their po-
sitions as functions of time, ignoring interactions between
different objects. We determine these positions from the ve-

locities given by V� =A�t�F� and �� =T�t�F� . A�0� and T�0� can
be found from Eq. �16�, and their time evolution is governed
by the differential equations given in Sec. II. While the ele-
ments of these matrices are coupled together, the equations
have no singularities, so we use Mathematica’s NDSolve
function �14� to numerically find the solutions and expect
reasonable accuracy. We use �=1, �=10−2 and supply a

force F� = ẑ.
These results can be compared to those from the skew

propeller shape, as well as a simple ellipsoid. The propeller
consists of two orthogonal disks of radius a attached via a
thin rod so that their centers are a distance 2� apart, as
shown in Fig. 7. The relevant portions of the mobility matrix
are A=diag�ax ,ax ,az� and

T = �0 b 0

b 0 0

0 0 0


with

ax =
3�4a2 + 5�2�

64a��5a2 + 6�2�
,

az =
3

64a�
,

b = −
3�

64a��5a2 + 6�2�
.

In the following, we use �=3a and then set a=1 in the same
length units we used for our nearly free draining object.

The skew propeller is an example of an object whose
twist matrix is symmetric and thus allows us to compare our
nearly free draining object with something in the tumble
zone. The ellipsoid allows a comparison with an object that
has no translation-rotation coupling; its twist matrix is zero.
We will choose its dimensions so that its alacrity matrix is
the same as that of the skew propeller.

To do the comparison, we can look at the width of the
distribution of particles as a function of time, as well as the
spread in the z direction,

w�t� =
1

N
�
i=1

N

�xi
2�t� + yi

2�t� , �27�

h�t� =
1

N
�
i=1

N

�zi�t� − �z�t��� , �28�

where 
xi�t� ,yi�t� ,zi�t�� is the position of the particle at time
t and �z�t��= 1

N�izi�t� is the average z position of the en-
semble at time t.

Figure 8 shows w and h, normalized by the maximum
linear distance between two points on the object, lm. The
ellipsoids must distribute themselves on the surface of a
sphere sinking at a constant velocity whose radius increases
with constant velocity �3�. Thus h and w are both linear in
time for ellipsoids.
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FIG. 6. A comparison between the predicted values of the axis
of rotation and angular velocity in the nearly free draining limit
with the full results valid for all values of the drag coefficient. On
the left vertical axis, the solid line represents the full � when the
object is undergoing the globally stable chiral motion, and the dot-
ted line represents the value computed from the perturbative expres-
sions in Sec. V. On the right vertical axis is the cosine of the angle
� between the axis of rotation and the axis of rotation computed in
the nearly free draining limit. �a�–�d� correspond to objects A–D,
respectively. In the case of �a�, the object does not enter the tumble
zone at all; before this happens, � has increased to the unphysical
point where the stokeslets overlap. However, the rest of the objects
had their forcing points chosen in a manner which required them to
be in the tumble zone for larger values of �, and their plots break off
before �max is reached.

�

�

2�

FIG. 7. The skew propeller shape used by �3�. The two orthogo-
nal disks have radius a and are fixed so their centers are a distance
2� apart. The center of twisting for this object coincides with the
origin, so its twist matrix has three real eigenvalues.
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The widths of the distributions for the skew propellers
and our sample object are both bounded. The skew propellers
evidently approach a constant w, while the nearly free drain-
ing objects have a w which oscillates at their rotation fre-
quency �. The spread h for the skew propellers in the tumble
zone increases linearly. However, we see that after an initial
transient motion, the longitudinal spread of our sample par-
ticles remains constant. This is because all of them begin to
sediment in the same regular manner.

Thus, overall we see that the ellipsoids spread out into a
spherical volume as they sink, with radius increasing lin-
early. The skew propellers spread out in a cylindrical shape
parallel to the applied force. The length of the cylinder in-
creases linearly, while the radius undergoes decaying oscil-
lations about a value smaller than the linear extent of each
object. The nearly free draining particles spread out over a
flat disk with constant longitudinal spread and a radius which
oscillates at the same frequency that each particle spins at.
The amplitude of these oscillations is slightly larger than the
maximum extent of the object.

B. Experimental illustrations

In order to verify that the chiral rotation discussed above
is significant in practice, we created some arbitrarily shaped
bodies and observed their sedimentation. We used both vis-
cous and nonviscous solvents. This allows us to gauge the
importance of inertial effects.

For the viscous solvent, we cut small objects out of a rod
of nylon plastic, a few millimeters in length in their longest
direction. We also took small lengths of copper wire and bent
them into twists or knots. Our objects were allowed to sedi-
ment in a 700 ml beaker filled with vegetable oil. Such oils
have kinematic viscosities of the order 30 cSt �15�, and our
nylon pieces fell at around 0.2 cm/s, giving a Reynolds num-
ber of slightly less than 1, well within the Stokes regime. The
copper twists, which fell more quickly, are still at Reynolds
numbers where inertial effects are not expected to be impor-
tant.

We used tweezers to hold each object just below the sur-
face, then released it and used a camera to take pictures at a
rate of about 3 frames/s. For these uniform materials, the
forcing point is the center of mass, which we expect to be
close to the center of reaction. Thus it is not clear from our

arguments above that these objects should be outside the
tumble zone. Nevertheless, we were able to see chiral sedi-
mentation with many of these objects. Figures 9�a� and 9�b�
show multiple-exposure views for both a nylon piece and a
twist of fine copper wire. The helical path is obvious for the
copper piece, but less so for the nylon. Figure 9�c� shows the
same nylon piece, in a separate run, from above. Here the
helical nature of the path is easier to see.

In addition to the objects shown, we tested over a dozen
other objects made in the same way. Some displayed little or
no rotation and simply settled into a preferred orientation.
Some of the heavier ones, which sank very rapidly, showed a
slight rotation about axes other than the vertical. We cannot
tell if this was actually a case of the objects tumbling; we
suspect that it was instead an initial reorientation which

0
0.5

1
1.5

2
2.5

3
3.5

4

0 0.5 1 1.5 2 2.5 3 3.5 4

w
(t

)
/l

m

10-4 t

Ellipsoid
Skew propeller

Nearly free draining

0
2
4
6
8

10
12
14
16
18

0 5 10 15 20 25 30 35 40

1
0

3
h

(t
)

/
l m

t

Ellipsoid
Skew propeller

Nearly free draining

(b)(a)

FIG. 8. Plots of normalized w�t� and h�t� as functions of time.
The width increases linearly with time for the ellipsoidal particle
but remains bounded for the particles with a nonzero twist matrix.
The spread of the particles increases linearly with time for both the
skew propellers and the ellipsoids, but after an initial transient re-
mains constant for the nearly free draining particles.

FIG. 9. �a� A multiple-exposure image of an irregular piece of
nylon sedimenting in vegetable oil. The nylon piece is a few milli-
meters in length, and the pictures were taken about 1 s apart. It is
clearly rotating around the vertical axis. �b� A multiple-exposure
image of a fine piece of copper wire sedimenting in vegetable oil.
The pictures were taken about 0.3 s apart, and the distance scale is
the same as in �a�. The object is rotating about the vertical axis as it
follows a helical path down. �c� A multiple-exposure image of the
same piece of nylon in �a� though not at the same time. From above,
the helical path is more apparent. More images and movies are
available in Ref. �18�.
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aborted when they hit the bottom of the beaker before reach-
ing their preferred orientation.

For comparison, we dropped small shards of brittle plastic
into a salt water solution, whose viscosity was lower than the
oil’s. The objects, cut from a disposable spoon, were a few
millimeters in size. Salt was added to the water to achieve
nearly neutral buoyancy without greatly affecting the viscos-
ity. In this solution, the objects fell at around 1 cm/s, giving
a Reynolds number �100, which is not fully in the regime of
Stokes flows. However, we still observed chiral sedimenta-
tion, so even at this Reynolds number the inertial effects do
not appear to change the motion qualitatively.

In these studies, we monitored for residual circulation in
the water by putting a small cylinder of floating plastic on
the surface. This cylinder remained stationary, indicating that
any residual flow is much smaller than the chiral motions.

With these plastic pieces, no ongoing tumbling motion
was seen; either there was no rotation or else they rapidly
reoriented themselves and twisted around the vertical axis.
Figure 10�a� shows a multiple-exposure picture of a typical
path. This object, shown close up in Fig. 10�b�, turned to the
same preferred direction regardless of initial orientation and
always rotated with the same sign. However, this is not the
only behavior; the object pictured in Fig. 10�c� had two op-
posite orientations which were stable. These produced oppo-
site signs for the rotations. In addition, some objects showed
negligible rotation though they did go to the same stable
orientation. This must correspond to an instance where 

�0.

VIII. DISCUSSION

In the foregoing we have explored how slowly sediment-
ing noncompact objects of generic shape rotate as they sink,
revealing chiral structure. These objects were represented as
collections of stokeslets, which are known to provide a good
representation of a broad range of real objects �11�. We in-
ferred the propulsion matrix from the matrix of Oseen inter-
actions between pairs of stokeslets. This propulsion matrix is
sufficient to determine the entire motion under slow sedi-
mentation at low Reynolds numbers �9�. To determine the
chiral rotation, it is sufficient to know the 3�3 twist matrix
T derivable from the propulsion matrix. In the case when T
has only one real eigenvalue, there is globally stable motion
corresponding to rotation about the corresponding eigenvec-
tor �5�.

Though all chiral rotation must vanish when there are no
hydrodynamic interactions, in the nearly free draining limit
where these interactions are arbitrarily small, there is never-
theless a constant and finite rotation about a fixed axis. The
angular velocity in this limit is independent of the strength of
the interactions, and the rotation axis approaches the line
between the forcing point and the center of reaction.

The features of an object that determine its chiral sedi-
mentation are unexpectedly subtle. Indeed, the rotation rate
depends on the stokeslet positions in a singular way, with
unevenly spaced stokeslets giving the largest response. For
such configurations it is the nearest distance that dominates,
and small displacements of the stokeslets on the order of this
shortest distance suffice to reverse the sign of 
. Thus 
 is
not a gross indicator of overall chiral shape. Instead, it is a
local probe, sensitive to local orientations relative to the
overall object. The maximum responses occurred for thin
screwlike objects. Similar objects at the microscopic scale
include biological filaments such as f-actin or microtubules.

The connection between our simple stokeslet objects and
real objects has not been fully explored in this paper.
Carrasco and de la Torre �11�, for example, described meth-
ods for implementing the stokeslet model which appear ap-
plicable to the objects we discuss. Thus, rather than predict-
ing the chiral response of any real object, we focused instead
on finding the scaling and analytical asymptotic behavior for
nearly free draining objects.

We have developed an empirical rule to predict the sign of
the chirality for some simple objects. However, this method
should be improved. We would like to find a simple method
to determine the chiral sign that is not only more accurate but
will also generalize to arbitrary objects. We also would like
to establish analytically the scaling that we empirically de-
termined in Sec. VI B and to include the effects of Brownian
motion.

The free draining limit we use is physically approachable
for the sedimentation of some large molecules or other poly-
mers, formed by assembling macromolecules or colloidal
particles. One could conceive of attaching a fluorescing
group to such a molecule and then using fluorescence polar-
ization in a centrifuge to measure the spinning rate. The spin-
ning rate could be used to characterize the object.

Even in cases where the objects are not nearly free drain-
ing, we expect most of our conclusions to apply qualita-

FIG. 10. �a� Three multiple-exposure pictures of the 9 mm long
object pictured in �b� as it sediments in salt water. The pictures were
taken about 0.15 s apart. In each case the twist about the vertical
axis as it moves in a helix is clearly visible, indicating that the
chiral effects on sedimentation are similar to those in the viscous
solvent of Fig. 9. Each picture corresponds to a different initial
orientation of the object. Though the transient motion was different
in each case, it always ended up turning to the same preferred
orientation and twisting in the same direction. �c� Another object
cut from a plastic spoon. This object has two stable orientations,
which lead to twists about the vertical axis in opposite directions.
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tively; the nearly free draining limit is not the only way to
escape the tumble zone, and general objects without symme-
try will often see the globally stable behavior.

The chiral sedimentation treated here is only one example
of how a colloidal object of irregular shape might respond in
a chiral way. For example, objects sedimenting in shear
flows can undergo net lateral drift according to chirality �16�.
Varying sedimenting forces periodically in time could also
be used to probe further properties of the propulsion matrix.
Molecules of submicron scale such as folded RNA must also
exhibit chiral sedimentation, though they will be greatly in-
fluenced by thermal Brownian motion. Beyond the context of
hydrodynamics, such objects can show chirality via their
self-assembly properties. For example, two copies of a chiral
globular protein have a most favorable orientation for bind-
ing. When many such copies self-assemble in this way, the
least constraining mode of assembly is a one-dimensional
stack. Such a stack must in general show a chiral twist which
may limit the stack’s potential to stick to its neighbors.
Aggeli et al. �17� used this as a model for the formation of
peptide fibrils. This generic view may account for the preva-
lence of one-dimensional assemblies of biological molecules.
Such responses are a promising course of study for the fu-
ture.

IX. CONCLUSION

The most classic chiral response of microscopic matter,
the rotation of the polarization of light, has been studied for

over a century. Here we have discussed an equally funda-
mental response: the chiral interaction of an irregular object
with a surrounding viscous liquid. In this case the chiral
properties arise entirely from the object’s geometry. We have
seen that macroscopic objects of arbitrary shape have readily
observed chiral sedimentation. The greatest response seems
to occur when the drag is concentrated at one end of an
elongated object. This study is only a first step toward un-
derstanding how shape creates chiral responses in colloid-
scale materials. There are numerous ways to explore various
shapes and numerous other responses, as sketched above.
Understanding how shape determines chiral response should
be valuable as a way of assessing the shapes of unknown
objects and as a way of designing shapes to create desired
responses.
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